A SIMPLIFIED PROCEDURE FOR COMPUTING VEHICLE ÓFFTRACKING ON CURVES

Federal Highway Administfation

December 1973

TECHNICAL REPORT STANDARD TITLE PAGE

FHWA-RD-74-8	2. Govemment Accanion $\mathrm{N}_{\text {a }}$.	$\text { PB } 231$
4. File ?id SubrieA SIMPLIFIED PROCED RE FOR COMPUTING VEHICLEOFFTRACKING ON CIRVES		```5. Rapail Daie December 1973 6. Parlarming Oiganiation Code HRS-41```
7. Authar s) C. B. Pilkington, II	D. How	8. Periorming Oramization Rop
9. Palormirio Orgenizalion Name ond Addiess Environmental Design and Contrel Livision ffices of Research and Development: rederal Highway Administration		10. Wrih Unin Na. $-\overline{11}$ Contacto Grant
12 Sponsoing Ajency Nome and Addiels Federa: Highway Administration U.S. Defartment of Transportation Washington, D.C. 20590		Final Report 14 Sponsoring Agoniy EOUS
10, Abstuci This report presents a simplified procedure for computiay vehı='r offtracking on curves. It was developed during a research effort to datermine what the offtracking requirements were if the width of buses for operation on the tntorstate Highway System was increased from 96 to 102 inches. The procedure was developed by modifying the existing proctdures to identify critical bus offtracking. Modificatio consisted of the use of an additional geometric relationship required to calculate "swept width," a parameter considered to be more signiticant than "offtracking," per se. Swept width is the apparent width of a vehicle as it exacutes a turnirg maruever. The tasic data for 15 buses and three tractor-semitrailer convinations, with widths of 96 and 102 inches; ard a full-sized station wagon were analyzed. Results of this analysis revealed that critical swept width does not occur untal a curvature of 27 degreer, or a radius of 212 feet or less, is reached. Swept width is not a problam for buses using the through traffic lanes on the Interstate Higt.way System, becauso curves as sharp as 27 degrees occur only on ramps designed for low speed and one-lane opriation. The procedure developed can be used by highway design personnel to select a maximum degree of curvature which would permit a vehicle to stay within the selected lane width ard by regulatory agencies when pennits are requested for movement of vehicles that exceed the legal maximum with, length or both.		
17. Key Words Offtracking Swept width Effective wheelbase Wheelpaths Effective axle	18. D:sitritution NO restric to tine pub Informacion 22151 .	mun" ns. This document is available through the National Techrical ervice, Sprinc̣field, Virginia
19. Socuity Clossif. (ot this topori) Unclassified	20. Socutir Clas h. (si his poge) Unclassified	21. $\begin{array}{c}\text { V0. of Pager } \\ 28\end{array}$ 22. Price 28 $\$ 3.25$

Farm DOT F 1700.7 (8.6.3)

UNITED STATES GOVERNMENT
DEPARTMENT OF TRANSPORTATION
Memorandu:n
date. March 22, 1974
Transmittal of Research Report No. FHWA-RD-74-o
subsc: "A Simplified Procedure for Computing
in reply
Vehicle Offtracking on Curves"
from : Director, Office of Research
Washington, D.C. 20590
To : Regional Federal Highway Administrators
Regions 1, 3-10

Sufficient copies of this report are being distributed to provide a minimum of orle copy to each regional office, one copy to each division office, and two copies to each State highway or transportation department.

This report presents a simplified procedure developed during a staff research effort by modifying an existing procedure to identify critical bus offtracking. This modification consisted of the use of an additional geometric relationship required to calculate "Swept Width," a parameter considered to be more significant than "cfftracking," per se. Swept width is the apparent width of a vehicle as it executes a turning na neuver.

Utilization of this procedure will enable highway design personnel to select a maximum degree of curvature which will permit a vehicle to stay within the selected lane width. It will also be useful to regulatory agencies which issue permits for vehicles that exceed the legal maximum width, length, or both.

A limited number of additional copies of this report are available for official use from the Environmental Design and Control Division (HR S-41), Office of Research. Additional copies for the public are available from the National Technical Information Service, Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22151. A small charge will be imposed for each copy ordered from NTIS.

The authors wish to express their appreciation to the several colleagues in the Federal Highway Administration who assisted by pieparing background data for this report: Miss Kathleen McGuire, formerly of the Environmenta] Design and Control Dj.vision; Mr. Donnell W . Morrison, of the Bureau of Motor Carriョx Safety: Mr. J. stanley Smith of the Engineering Services Division anc Mr. Samuel C. Tignor of the Traffic Systems Division.

The contributions of previous offtracking studies by State highway agencies in Arizona, California, Idaho, Illinois, Iowa, Michigan, Nevada and Oregon and the Western Highway Institute were especially appreciated.

TABLE OF CONTENTS

Introduction 2
Summary 2
Research Ppproach 4
Basic Data 5
Resuits 9
Other Uses for this Procedure 13
Bibliography 14
Appendix A 15
Appendix B 18
Appendix C 19

INTRODUCTION

The Secretary of Transportation requested that the National Highway Traffic Safety Admiristiation (NHTSA) and the Federal Highway Administration (fHWA) undertake a cooperative research effort to provids definicive infcrmation on che safety of wide buses. The information was used to formulate the Department's recyumendation to Congress as to whether $102-$ inch ($81 / 2$ fest) wide buses should be permitted to use the Interstate Highway System. Eligibility for Federal-aid currently limjes width to 96 inches (8 feet) except in 11 States where wiers, rehicles are permitted under a "(irandfather Clause." I/

NHTSA and FHWA dividec the basic objective--a determination as to wheticr or not $81 / 2$-foot wide buses could safely use the Interstate Highway System--into six research tasks:

Task 1 - Aerodynamıc Characteristics, Disturbances, and Effects

Task 2 -- Lateral Placement of Vehicles
Task 3 - Lateral Stability of Buses
Task 4 - Offtricking on Sharp Curves
Task 5 - Bus Accident Data Analysis
Task 6 - Censolidation of Resulこs
This study is in responee t. Task 4, "Offtracking on Sharp Curves." A..chough the primary wojective of this research effort was to establish critical offtracking situations due tr 8 1/2-foot wice buses, the procedure developed will b: woful to ti:ose interested in lie safety, design, and operation of highway facilities or large highway vehicles.

1 / A provısion in the Federal Act permits exceptions to the prescribed width maximum in SLates where greater lamits were lagaily permitted July $1,1956$.

Definitions of terms used in report

Because of the variation in meaning of the terms used when offtracking is discussed, it is well to define those terms as used in this report.

Effective Axle - That line where all wheels on a wheel assembly contribute equally to the tractive efiort of that assembly.

Effective Wheelbase - Distance between the effective axles.

Front Overhang - The distance between the outermost: point of the front bumper and the leading effective axle.

Offtracking - The difference in radii from the turning center to the center of the leading effective axle and the rearnost effective axle, Juring a turning maneuver.

Swept Width - The difference in the path described by the outermost point on the vehicle (generally the front corner on the outside of the turn) and the innermost roint of the vehicle (the body over the centerline of the rear most effective axle).

Wheel Path - That path described by the outside of the outermost tire of the vehicle during a turn and the outside of the innermost rear tire during a turn. For example, during a right tu:n maneuver the tires describing the wheel path are the left front and riyht rear tires

Reference to figure 1 on page 7 will clarify the meaning of these terms.

SUMMARY

A relatively good understanding of the offtracking of trucks has been developed ir previous research. Consequently, only a simple modification of existing procedures was necessary to identify critical bus offtracking situations. The modification consistel of the use of an additional geometric relationship required to calculate "swept width," a parameter consiciered tc be more significant than "offtracking," per se. Offtracking is defined as the deviation between the paths of the front and rear axles
during a turning maneuver. Swept width is tr st overall width of a bus as it executes a turi.ir. .v.i. This approach identificd critical situations at. iow cont and permitted time for more sophisticated ofitroking research, if necessary. Such studies were not considered necessary because:

1. Critical offtracking situations occur only on ramps which are off the Interstate Highway System through traffic lanes and are designed for one-lane oreration at low speeds. The critical situations were identified as rainps having a curvatiare of 27 degrees or more, or a radius of 212 feet or less. In these situations when the bas is operating at low speed, its apparent widti has little or no effect on the driving path of a following car.
2. A literature review indicated that driver experience was a major factor in determining how much more than the minimum a vehicle would offtrack. Further, this review indicated that extensive human factors research wodld be necessary to simulate the effect of driver experience on offtracking, but would adc little to the precision of predicting the bus swept width on sharp surves.
3. The literature review aiso indicated that sophisticated vehicle dynamics models are available which can be modified to predict the effects that bus speed and weight have on offtracking. Because sharp curves require low speed operation, the modified vehicle dynamics models would add little to the precision of predicting swept widu. In sharp surves.

The "swept width" computations revealed that the most critical $81 / 2$-foot wide bus configuration las the $\mathrm{MC}-6$, the same configuration lised in the aerodynamics, lateral placement, and literal stability research tasks. The swept width of this bus utilized the full 12 -foot lane width on a curvature of 27 degrees. The swept width of the 8-foot wide configuration of the same basic bus, the MC-7, did not reach the 12 -foot lane width until a curvature of 31 degrees was employed.

Fortunately, swept width is not a problen for buses using the through traffic lanes of the Interstate fighway System, because curves as sharp as 27 degrees occur only on ramps designed for low speed and one-lane operations, such is loops of cloverleaf interchanges. Moreover, there is
always at least a two-foot wide shoulder on each side of the ramp which will accommodate the bus overhang. The 6 -- inch difference in swept width is of no practical importance because there would be no adverse effect on the safety of the bus passengers or passenger car occupants who may be following a wider bus on the same ramp. The increase in sorept: width between the $81 / 2$-foot wide bus and the 8 -foot wide bus on the critical 27 degrec curve is the 6 -inch difference in bus width.

RESEARCH APPROACH

The offtracking task began by revewing the pertinent literature on the subject which inclucied reports by the American Association of State Highuay Officials (AAs!iv)l, Bureau of Public Roads (now the Federal Highway A Aministration) ${ }^{2}$. Scciety of Automotive Engineers (SAE) ${ }^{3}$, and the Western Highway Institute (WHI) ${ }^{4}$. Also an inquiry was made to each State highway agencl for r reports and other documentation of any offtracking studies they had conducted. Of the State studies reviewed, a Nevada Lepartment of Highways' study ${ }^{5}$ which was jointly sponsored by five State agencies, three industrial associations, and four trucking firms, proved to be most helpful in providing insight into the offtracking problem.

The literature review indicated that three major approaches have been used in decermining offtracking requirements; (1) full-scale measurements, (2) small-scale model measurements and (3) mathematical equations. The use of scale-model measurements is less expensive and time consuming if offtracking data were sequirec for a large number of specific vehicle conioinations. The available mathematical offtracking requirement equations vary from the comple. SAE offtracking equation to the abbreviated, but valid, offtracking egua:ion developed by WHI.

The assumption that the geometry of a situation is the controlling factor in a turning maneuver was sirengthened by the following observations obtained from the literature:

1. A vehicle may not achieve its maximum offtrack in turns of less than yo degrees, which would tend to make the offtracking computation more severe than would be expected in "real situations.'
2. A study performed by the Nevada Department of Highways indicated that the experience of a driver greatly influenced the offtracking requirements of his vehicle as he selecta the path, which may vary from the path assumed in any experimental or mathematical process.

BASIC DATA
For this study, 19 vehicie configurations were selected as a representative sample for determining the effects of offtracking when the width is increased from 3 feet to $81 / 2$ feet.

Basic data for the buses were supplied by the Bus and Truck Supply Company (Trailways), Motor Coach Industries (Greyhound) and General Motors Corporation (primary suppliers to transit companies). Twelve bus configurations were selected for the existing 8-foot and $81 / 2$ foot widths. Three of the 8 -foot widths were modified by increasing only the width to 8 l/2 feet. To provide a comparison with trucks, two tractor-semitrailer combinations (C-50 and WB-50) employed in developing AASHO design standards were analyzed including a modification of the 8 1/2-foot width to an 8 -foot width. For further comparison, offtracking of a full-sized station wagon was also computed. Table J . shows the key dimensions of these vehicle types.

In geometry it is axiomacic that no two points on a line perpendicular to a radius of a circle will describe the same circle, when these points are separated by some distance, as the radius is rotated. When this phenomenon takes place during a vehicle turninc maneuver, it is referred to as "offtracking." Figure 1 illustrates offtracking and the various other offtracking characteristics.

The WHI equation, which computes maximum vehicle offtrackirg based upon the geonetry of a vehicie and the highway horizontal curve, was employed as the basic equation for the resesrch. The equation was expanded to provide the capability of computing swept wiath and wheel path width which are considered to be more mea ingful to traffic and design engineers, than offtrackin, per se.

Table I. Vehicle Dimensicns (in feet)

	General Motors Corporation									
	City Transit				Suburban Transit			Intercity		
	MD-4279	MD-4277	MD-422.5	MD-4223	MD-4222	MD-4218	$\begin{gathered} \text { MD- } 4218 \\ \text { MOD } \end{gathered}$	MD- 7020	MD-7029	MD-7029
Overall length Overall width	35.12 7.98 3.00	35.12	40.04 7.98	40.04 8.48	35.12 7.98	40.04 7.98	40.04 7.98	$\begin{array}{r}35.07 \\ \hline .08\end{array}$	39.98	39.98
Track width	3.00	8.50	8.00	8.50	8.00	8.00	3.50	8.00	8.00	8.50
Wheelbase	19.58	19.58	23.73	23.73	19.58	$\therefore 2.73$	23.73	21.63	26.55	26.55
Effective wheelbuse	19.58	1.9.58	23.73	23.73	19.58	23.73	23.73	21.63	26.55	26.55
Front overhang	6.85	5.85	6.85	6.85	6.85	5.85	6.85	6.01	6.01	6.01
Rear overhang	8.69	8.69	9.46	9.46	8.69	9.46	946	7.43	7.43	7.43
	Bus and Truck Supply Company		Motor Coarh Industries			AASHC Design Truck Combinations			Full-size Stetion Wagon	
	Trailways		Greyhound							
	c5-04'	$\begin{aligned} & \text { O5-04' } \\ & \text { MOD } \end{aligned}$	MC- 5	MC-6	MC-7	C- 50	$\begin{aligned} & \text { WB-50 } \\ & \text { MOD } \end{aligned}$	WB- 50		
Overal]. length	40.00	40.00	34.96	39.96	39.96	50.00	55.00	55.00	18.17	
Overall width	8.008.00	8.50	8.00	8.50	8.00	8.00	8.00	8.50	6.57	
Track hidth		8.00	8.00	8.50	8.00	8.00	8.00	8.00	5.29	
Whee ${ }^{\text {b }}$, ase	23.79	23.7922.27	21.75	23.50	23.75	14.00	15.00	16.00	$\begin{aligned} & 5.29 \\ & 9.92 \end{aligned}$	
Erfective wheelbase	22.27		21.75	24.71-	24.75	$\begin{aligned} & 16.06 \\ & 22.00 \end{aligned}$	$\begin{aligned} & 18.09 \\ & 26.00 \end{aligned}$	$\begin{aligned} & 18.00 \\ & 26.00 \end{aligned}$	$\begin{aligned} & 9.92 \\ & 5.92 \end{aligned}$	
Trailer wheelbase		-							5.92	
Effective trailer wheelbase	-			-	-	26.00	30.00	26.00	-	
Total wheelbase	-	-	-7$=.73$7.48	-		44.00	50.00	50.00	-	
Front overhang	$\begin{aligned} & 7.23 \\ & 3.08 \end{aligned}$	$\begin{aligned} & 7.13 \\ & 9.08 \end{aligned}$		$\begin{array}{r} 6.21 \\ 10.25 \end{array}$	$\begin{array}{r} 5.85 \\ 10.36 \end{array}$	$\begin{aligned} & 3.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 2.00 \end{aligned}$	3.29	
Rear overhang									4.96	

FIGURE 1-TURNING PATH CHARACT:RISTICS

The WHI equation for computing maximum offtracking is:

$$
\left.M O T=R-\sqrt{R^{2}-\Sigma(W B} \bar{B}^{2}\right)
$$

where,

$$
\begin{aligned}
\text { MOT } & =\text { Maximum offtrack } \\
R= & \text { Radius of the desired vehicle path } \\
\text { WB }= & \text { Effective wheelbase } \\
\Sigma\left(\text { WR }^{2}\right)= & \text { The sum of the squares of all wheelbases } \\
& \text { comprising a given vehicle combination. }
\end{aligned}
$$

Because vehicles have both width and length, offtracking makes the vehicle appear wider in cross section on a curve than it will on tangent. The visual effect of the phenomenon is the "swept width" which will influence a drivel to alter his desired path to avoid the perceived hazard. The equation for swept width is:

$$
S W=\sqrt{\left(\mathrm{WB}_{1}+\mathrm{FOH}\right)^{2}+\left(\mathrm{R}+\frac{1}{2} \mathrm{~T} W\right)^{2}}-\left(\mathrm{R}-\mathrm{MOT}-\frac{1}{2} \mathrm{TW}\right)
$$

where,

$$
\begin{aligned}
\text { SW } & =\text { Swept width } \\
\text { WB } & =\text { Effective wheelbase } \\
\text { FOH } & =\text { Front overhang } \\
\mathrm{R} & =\text { Radius } \\
\text { TW } & =\text { Track width } \\
\text { MOT } & =\text { Maximum offtrack }
\end{aligned}
$$

The equation for wheel path is:

$$
W P=M O T+T W
$$

where,

```
    WP = Whee.l path
MOT = Maximum offtrack:
    TW = Track width
```

The swept width was computed for a series of curves which occur on the Interstate Highway System both on the mainline and on ramps. Mainline curvatures were computed for curves of 0 to 9 degrees and the ramp curvatures for curves of 0 to 38 degrees for each of the 19 vehicle types. Figure 2 shows a typical mainline curve and a typical loop

FIGURE $2 \cdot$ INTERSTA IE HIGH'WAY CURVE DESCRIPTIONS
ramp found on the Interstate Highway System. Table 2 shows the computer input required for the analysis.

RESULTS

Critical swept width situations were identified to occur only on ramps which are off the Interstate highway through traffic lanes and are designed for one-lane operation ot low speeds. The critical situations were idfentified as ramps having a curvature of 27 degrees or more, or a radius of $i l l$ feet or less. In these situations when the bus is operating at low speed, its apparent width has little or no effect: on the driving path of a following Qar.

In table 3, a comparison is made of swept width at that point where it becomes critical for a 12-foot lane for four vehicle types. As shown in this table, the MC-6 bus reaches the critical point on the curve of 27 degrees and the critical point for the MC-7 bus occurs on a curvature of 31 degrees. The swept width of the WB-50 tractorsemitrailer combination reaches the 12 -foot lane width on a ranp with a curvature of $243 / 4$ degrees and the wB-50 modified tractor-semitrailer slightly exceeds it at the $281 / 2$ degiee curve. Thus, the situaiior is less critical for the $81 / 2$-foot: wide $M C-6$ bus than the $81 / 2$ foot WB-50 tractor-semitrailer combination at the $281 / 2$ degree curve. It is also noted that the difference in swept width for the $M C-6$ and $M C-7$ buses, for the curves shown in table 3 , is only 0.50 feet, or the 6 -inch difference in bus width. For comparison purposes, the swept width on mainline curves for 3 and 7 degrees are also shown. These are the maximiun curvature generally found on Interstate highways with design speeds of 70 miles per hour and 50 miles per hour, respectively. It may be seen that the swept width is well within the lane width of 12 feet.

Table 2. Vehicle types and dimensions used for whesibases, track width, body width and front overharg (Dimensions shown in inches)

Vehicle Type	Whee I- base 1	Wheel- base 2	Truck Width	Body width	Front Overhang
05-04 (8')	267.20	-	96.00	95.40	85.50
05-04 (8 1/2')	267.20	-	96.00	101.40	85.50
MC-5	261.00	-	95.00	95.00	68.75
MC-6	296.50	-	102.00	101.50	74.50
MC-7	297.00	-	96.00	96.00	70.25
MD-4279	235.00	-	95.00	95.76	82.24
MD-4277	235.00	-	102.00	101.76	82.24
MD-4225	284.76	-	96.00	95.76	82.24
MD-4223	284.76	--	102.00	101.76	82.24
MD-4222	35.00	-	95.00	95.76	82.24
MD-4218	284.76	-	96.00	95.76	82.24
MD-4218 MOD*	284.76	-	102.00	101.76	82.24
MD-7020	259.50	-	96.00	95.76	72.12
MD-7029	318.54	-	96.00	95.76	72.12
MD-7029 MOD*	318.54	-	102.00	101.76	72.12
C-50	1.92 .00	312.00	96.00	96.00	48.00
WE-50 MOD*	216.05	360.00	96.00	96.00	36.00
WB-50	2-6.00	360.00	102.00	102.00	36.00
Station Wagon	119.00	-	63.32	80.00	39.50

[^0]Table 3. Comparison of the critical iwept width for four vehicle types (in reet)

$\begin{gathered} \text { Vehicle } \\ \text { Type } \end{gathered}$	Body Widt.h	Degree of Curve					
		Mainline		Ramps			
		30.00^{\prime}	$7^{\circ} .00^{\prime}$	24*.45	$27^{\circ} .00^{\prime}$	$28^{\circ} .30^{\prime}$	$31^{\circ} .00^{\prime}$
MC- 6	8.5	8.88	9.48	11.72	12.00	12.19	12.50
MC-7	8.0	8.42	9.02	11.22	11.51	11.69	12.00
WR-50	8.5	8.95	9.59	12.00	12.31	12.52	12.86
WB-50 MOL	8.0	8.45	9.09	i1. 50	11.81	12.02	12.36

Th: offtracking requirement of an 8 1/2-foot wide bus, 40-feet. long is the same as that of an 8-foot wide bus of the same length. For purposes of comparison, the bus offtracking requirement is about half that of a tractortrailer combination either 8 - or $81 / 2$-feet wide and 55-fiet long (l.El feet vs. 3.23 feet). However, a bus offtracks about six times more than a station wagon, 6-feet 8-inches wide and 18-feet long (1.6i feet vs. 0.26 feet). Since the offtracking requirement is a function of the wheelbase, a more descriptire comparisun is swept width which includes the offtracking sequirement and accounts for differences in vehirlo widths.

Based upon these computations of the swept width requirements for the vehicles analyzed, the required widths are well within the 12-foot lane widths on Interstate through traffic lanes and ramps. Also, the effects of inertia of the vehicle would probably not cause the vehicle to exceed the lane boundary. Moreover, there is always at least a two-foot wide shoulder on each side of the ramp which will accrmmodate the bus overhang.

Further calculations were made with various combinations of 'vidth and length of a vehicle The results showed that swept width was more sensitive to changes in the length of vehicles rather than to the width.

The procedure developed can he used by highway design personnel to select a maximum degree of curvature which would permit a vehicle to stay within the selected lane width and widths of entrances to terminal tacilities. It can be used to check design to insures that the additional width a larger vehicle appears to gain when negotiating a curve will not exceed selected safety boundaries which may cause a following or mecting lriver to hazardnusly veer his vehicle out of a "safe path" because of the largex venicle. Another use of this procedure would be concerned with the movement of outsized vehicles, either in width, lencth or both, to select routes over which to travel. Additionally, the recpulatory agency which must act upon permits to rove outsized vehicles must determine the routes these vehi.cles can use and the critical points along the route where special traffic controls must be exercised to both protect the normal traffic and the cutsized vehicle.

In each of the above sases, all that is required to perform the necessary calculations are appropriate physical dimensions of the vehicle, either design or actual, and those of the curve cr intersection, either designed or existing. These data can then be inserted into the offtracking program such as the FORTRAN IV program in Appendix A. Appendix b shows the computer input data and samples of the printout data are shown in Appendix C.

BIILLTOGRAPHY

1. American Asscciation of State Highway Officials. A Polic on Geometric Design of Rural Highways. 1965 Washingi:on, D.C.: AASHO; 1966.
2. Stevens, Hoy, Tignor, Samuel C. and LaJacono, James F., "Offtracking Calculations for Trailer Combinations," Public Roads, Volune 34, Number 4, Washington, D.C'.: Bureau of Public Roads, 1966.
3. Society of Automotive Engineers. "Turning Ability and Off Tracking - SAE: J695," 1965 SAE Handbook, New York, SAE, pp. 913-918.
4. Western Highway Institute. Offtracking Characteristicsi of Trucks ant Truck Combinations, Research Committee Report No. 3. San Francisco: WHI, February, 1970.
5. Nevada Department of Highways. State of Nevada Test Program - Truck Combinations Exceeding 70 Fe.et. Carson City: The Department, January 1968.
6. Right. of Way Section, Condemnation Division, Arizona Highway Department, Truck Turning Radius. Phoenix: The Departmen' , no date.
7. Young, J. C., Truck Turns," Reprinted from California Higkways and Public Works. Sacramento: The Department. of Fublic Works, March-April 1950.
8. Research Dj.visiion, Idaho Department of Highways. A Study of Highway Cparations with Truck Tiailer Double and Triple Units, Researci Project 35. Boise, September 1964.
9. Illinois Department of Pubiic Works and Buildings, Offtracking. Springiield: The Department, 1968.
10. Iowa state Eighway Comission, "Truck Turning Paths," Informative Memorandum. Ames: The Commission, January 29, 1965.

1i. Traffic and Saiety Division, Michigan Department of State Highvays, Turning Path Determination Procedure, A Study to Verify Predicted Turning Paths. Lansing: The Departinent, May 1969.
12. Engineering Division, Oregon State Highway Department. Report of Truck Turning Path Study. Salem: The Department, March 1958.

```
FORIRAN IV G LEVEL 2l
MAIN
                            USE DOUBLE PRECISION FOR ALI REAL NUMBERS
C
    C
0 0 0 2
    C
    0003
0004
000:
0006
000%
0008
0009
010
N
0011
0nl2
00. }
0014
N015
0 0 1 6
    C
    00 200 MiNUTE = MLO. MHI, MINC
    C
    COMPUTE RAJIUS CE CUKVE ANO WRITE PAGE HEADER
0 0 1 7
0018
019
0020
IMPLLICIT REAL*B (A-H=O-7)
```


0001

0002

```
    F FORMAT ITIO,'I',33X,'WHEFL- WHEEL- TEACK BODY FRONT',
    # T90,'1%,i,T26,'VFHICLE TYPE BASE I RASE 2 '',
    * 'WIDTH WIDTH OVERHANG',1,1'0.,T10,'1'.15X,こA8,3F8.2,
    * F9.<̀.FB.2.T90,'1',
    maxImum df 2I different vehicles may be treated in a SIngle run
    DIMENSION WB1(2I), WB2(21), TW(21), OW(21), FRب!(z1), TYPE1(21).
    * TYPEZ(21)
    STATEMENT FUNCTION TO COMPUTE RADIUS GIVEN DEGREE GF CUHVE IN MINUTES
    RADIUS(MDC) = 1080000. / {3.14159265358979300* DFLOAT(MDC):
    C READ THE SMALLEST DEGREE GF CURVE,THE LARGEST DEGREE OF CURYF ANO
    THE INCREME.UTAL DEGREE OF IJJVE ANG CUNVERT TO MIMUTES
    REOD(1,9000) 10LO.IMLG,IDHI=IMHI,IOINC,IFINE
    9000 FGP\becauseA: (3:13,1x,:2,2X:1
    WRITE 13,91ON! IDLO.IMSU,IDHI,IMHI,IDINC,IMINC
```



```
    * 14,'-',12,' 6Y',14,'-',I2,199,'1','i/)
        MLO = IMLO+60*IOLO
        MHI = IMHI+60*IOHI
        MINC = IMINC +60#IDINC
        READ THE NUMDER OF VEHICLES AN[ THEIR DIMENSIONS
        fEGOL (1,9000) nvEiCL
```



```
    * FOH(I),I=1,NVEHCL)
    FiOD FGRMAT (2A8.5F8.01
    C
        WRITE THE VEifICLE DIMT.NSIONS
    loop rhru all desired curves
        R = RADIUS(MINUTE)
        jDEG = MINSTİ / 60
        JMIN = MJNUTE - 60* JDEG
        JMINE MRITE (3,9400) SOEGOJMEG
    3400 FORMAT ('1',T10,'1,,15X,I3,:-*,I ?,' DEGREE CURVE, RADIUS =**
    * FO 2,TOJ,'1',/11,T10,'1',35X,'OFF-TRACK',5%,
```

```
    fortran IV g level 21
main
DATE \(=74044\)
0033 0035
```


'WHEEL TRALN SWEPT',T9G,'I',/,TZG,'VEHICLE TYPE',

```
# 'WHEEL TRALN SWEPT',T9G,'I',/,TZG,'VEHICLE TYPE',
    R=, 8X,'WIOTH (FT)
    R=, 8X,'WIOTH (FT)
C
C
C
C
    C
    C
C
C
    0025
    0025
    0026
    0026
0027
0027
028
028
0029
0029
0030
0030
003:
003:
~
0035
0035
    0022
    0022
    00<3
    00<3
    OO
    OO
    CO 100 IV = 1. NVERCL
    CO 100 IV = 1. NVERCL
024
024
    COmfute frf thack wiglh m ot
    COmfute frf thack wiglh m ot
    UT = R - USURT (R#F - WBIIIV) #W&I(IV) - WBZ(IV) % WH2(IV),
    UT = R - USURT (R#F - WBIIIV) #W&I(IV) - WBZ(IV) % WH2(IV),
    COMPUTE SWEPT WIDIN -- SW
    COMPUTE SWEPT WIDIN -- SW
        !1 = FOMIIV! + بBI!IV
        !1 = FOMIIV! + بBI!IV
        T2 = R - 0.5 # OWIIV)
        T2 = R - 0.5 # OWIIV)
        SW = IUSORT (T1*T1+T2#T2)-R + UT + 0.5* EW\1VI)/ 12.0
        SW = IUSORT (T1*T1+T2#T2)-R + UT + 0.5* EW\1VI)/ 12.0
    C
    C
        ZGMPUIE WHEEL GRACK WICTH -- wP
        ZGMPUIE WHEEL GRACK WICTH -- wP
        WP = 1OT + TW(IV: ) i 12.0
        WP = 1OT + TW(IV: ) i 12.0
        OT = OT / 12.0
        OT = OT / 12.0
C
C
c
c
write the cumputed values
write the cumputed values
WRITE (3,9500: TVOEIIIV),TYPEZ(IVI,OT,WP,SW
WRITE (3,9500: TVOEIIIV),TYPEZ(IVI,OT,WP,SW
    9500 'ORMAT 1'0',TIO,'1',15X,2A4,F12.2,F14.2.F15.2,'90.'1',5\I
    9500 'ORMAT 1'0',TIO,'1',15X,2A4,F12.2,F14.2.F15.2,'90.'1',5\I
    C
    C
    END OF LOOPS
    END OF LOOPS
    100 CuNT INUE
    100 CuNT INUE
    100 CUNTINUE
    100 CUNTINUE
    200 CONT INUE
    200 CONT INUE
    STOP
    STOP
    ENO
```

 ENO
    ```


APFENDIX B－INPUT DATA
\begin{tabular}{|c|c|c|c|c|c|}
\hline UEGKEt If CUPVE： & FROM & 0－15 T0 & 3H－30 HY & \(0-15\) & \\
\hline & wrrer & WHEEL－ & TRAC & Briur & CRINT \\
\hline VEHICEL TYPE & hase ì & BASE 2 & WIDTh & WIOTH & IJVEKmAivg \\
\hline U5－048 \({ }^{\prime}\) & 267.20 & 0.0 & 96.00 & 95.40 & dS． 50 \\
\hline リち－14 8．5＇ & 267.20 & 0.0 & 96.00 & 101.40 & 85.50 \\
\hline \(\cdots C-b\) & 261.80 & 0.0 & 96.00 & 36．00 & 68.75 \\
\hline \(\mathrm{NC}-\mathrm{F}\) & 206．50 & 0.0 & 102．09 & 101.50 & 74.50 \\
\hline m－7 & 297.00 & O． 0 & 96.00 & 96.00 & 10．25 \\
\hline \(\cdots 0-4279\) & フヨ5．00 & 0.0 & 96.00 & 95.76 & 82.24 \\
\hline \(m 0-4277\) & 235.00 & \(\therefore 0\) & 102.00 & 101.76 & 82.24 \\
\hline Mij－ 4225 & 284．76 & 0.0 & 96.06 & 95.76 & 82.24 \\
\hline \(M D-4 ? \% 3\) & 284.76 & 0.0 & 102.00 & 111.76 & 82.24 \\
\hline 以り－42く？ & 235.16 & 0.0 & 96.00 & 45.76 & 82.24 \\
\hline \(m u-4018\) & 284.76 & 0.0 & 96.00 & 45.76 & 82.24 \\
\hline M0－4213 Mno & 284.76 & G． 0 & 102.00 & 101.76 & 82.24 \\
\hline \(90-7020\) & 259.50 & 0.0 & 96.00 & 95.76 & 72.12 \\
\hline ND－ 7029 & 31\％．54 & 0.0 & 96.00 & 95.70 & 72.12 \\
\hline MJ－ 7029 MOL & 318. & 0.0 & 102.00 & 101.76 & 72.12 \\
\hline C \(\cdot 50\) &  & 112．00 & 96.00 & 96.00 & 48.00 \\
\hline wb－50 MOD & 216．0 & 360.00 & 96.00 & 96.00 & 36.00 \\
\hline \(\omega B-50\) & 216.00 & 360.00 & 102．00 & 102.00 & 36.00 \\
\hline
\end{tabular}

\section*{APPENDIX C - PRINTOUT DATA}

\section*{2:- O DEGKEE CURVE, RGU!US \(=238.73\)}

6
\begin{tabular}{|c|c|c|}
\hline UFF-TKACK & WHEEL TRACK & SWELT \\
\hline WIUTH (FT) & WIDTH (FT) & WIOTH (FT) \\
\hline 1.02 & 9.02 & \(\therefore 0\) \\
\hline 1.02 & 9.02 & 11.19 \\
\hline 0.97 & 8.97 & 10.48 \\
\hline 1.25 & 9.3: & 11.67 \\
\hline 1.26 & 9.25 & 11.13 \\
\hline 0.78 & 8.78 & 10.17 \\
\hline 0.78 & 9.28 & 10.66 \\
\hline 1.15 & 9.15 & 11.01 \\
\hline 1.15 & 9.05 & 11.50 \\
\hline 0.78 & ४.7\% & 10.17 \\
\hline 1.15 & 9.15 & 11.01 \\
\hline 1.15 & 9.65 & 11.50 \\
\hline 0.96 & ४.96 & 10.47 \\
\hline 1.44 & 9.44 & 11.55 \\
\hline 1.44 & 9.94 & 12.04 \\
\hline 1.91 & 9.91 & 10.71 \\
\hline 2.21 & 10.5: & 11.40 \\
\hline 2.51 & 11.01 & 11.9 .9 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{E TYPE} & \multicolumn{2}{|l|}{R43IUS \(=233.86\)} & \\
\hline & OF:- - TRACK & WreEl track & SWEPT \\
\hline & WIDTr (FT) & WIDT: \({ }^{\text {(FT) }}\) & WIDTH (FT) \\
\hline 05-04 *' & 1404 & 9.04 & 10.75 \\
\hline 05-048.51 & 1.04 & 9.04 & 11.25 \\
\hline MC-5 & 0.47 & 3.99 & 10.53 \\
\hline MC - 6 & 1.23 & 9.78 & 11.68 \\
\hline MC-7 & 1. \(2 t\) & 9.28 & 11.19 \\
\hline 10-4279 & 0.80 & 8.80 & 10.21 \\
\hline MD - 4277 & 0.80 & \({ }^{5} .30\) & 10.71 \\
\hline in) - 4225 & 1.18 & 9.18 & 11.07 \\
\hline MD - 42? 3 & 1.18 & 9.68 & 11.57 \\
\hline MO - 4222 & 0.80 & 8.80 & 10.21 \\
\hline ML - 421\% & 1.18 & 9.18 & 1:.07 \\
\hline MD - 4218 MOD & 1.18 & 9.68 & 11.57 \\
\hline MO - 7C20 & 0.98 & 8.98 & 10.52 \\
\hline MD - 7029 & 1.47 & 9.47 & 11.12 \\
\hline MD - 7029 MLO & 1.47 & 9.97 & 12.11 \\
\hline C - 50 & 1.95 & 9.95 & 1C. 77 \\
\hline WB - 50 milu & 2.57 & 10.57 & 11.47 \\
\hline HB - 50 & 2.57 & 11.07 & 11.97 \\
\hline
\end{tabular}
```


[^0]: *Indicates width modification only.

